LE100-Series Electrical Data

<table>
<thead>
<tr>
<th>MODEL</th>
<th>HP</th>
<th>VOLTAGE</th>
<th>PHASE</th>
<th>SF</th>
<th>FULL LOAD AMP</th>
<th>LOCKED ROTOR AMP</th>
<th>THERMAL OVERLOAD TEMP</th>
<th>STATOR WINDING CLASS</th>
<th>CORD LENGTH FT</th>
<th>DISCHARGE</th>
<th>AUTOMATIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE102A2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>10</td>
<td>2" Flanged</td>
<td>YES</td>
</tr>
<tr>
<td>LE102A2-2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>25</td>
<td>2" Flanged</td>
<td>YES</td>
</tr>
<tr>
<td>LE102A2-3</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>35</td>
<td>2" Flanged</td>
<td>YES</td>
</tr>
<tr>
<td>LE102M2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>10</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE102M2-2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>25</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE102M2-3</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>35</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE102M3</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>10</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE102M3-2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>25</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE102M3-3</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>8</td>
<td>22.3</td>
<td>105°C 221°F</td>
<td>B</td>
<td>35</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE103M2-2</td>
<td>1</td>
<td>208-230</td>
<td>3</td>
<td>1.00</td>
<td>5.3</td>
<td>18.3</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE103M2-3</td>
<td>1</td>
<td>208-230</td>
<td>3</td>
<td>1.00</td>
<td>5.3</td>
<td>18.3</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE103M3-2</td>
<td>1</td>
<td>208-230</td>
<td>3</td>
<td>1.00</td>
<td>5.3</td>
<td>18.3</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE103M3-3</td>
<td>1</td>
<td>208-230</td>
<td>3</td>
<td>1.00</td>
<td>5.3</td>
<td>18.3</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE104M2-2</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>2.5</td>
<td>9.2</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE104M2-3</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>2.5</td>
<td>9.2</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE104M3-2</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>2.5</td>
<td>9.2</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE104M3-3</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>2.5</td>
<td>9.2</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE105M2-2</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>1.9</td>
<td>7.1</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE105M2-3</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>1.9</td>
<td>7.1</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>2" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE105M3-2</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>1.9</td>
<td>7.1</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
<tr>
<td>LE105M3-3</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>1.9</td>
<td>7.1</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>3" Flanged</td>
<td>NO</td>
</tr>
</tbody>
</table>

LE100-Series Technical Data

- **IMPELLER**: 2 VANE CLASS 25 CAST IRON
- **SOLIDS HANDLING SIZE**: 2"
- **PAINT**: POWDER COAT
- **MAX LIQUID TEMP**: 60°C 140°F
- **MAX STATOR TEMP**: 130°C 266°F
- **THERMAL OVERLOAD**: 105°C 221°F (single-phase only)
- **POWER CORD TYPE**: SJTW (1-PH) or SEOW (3-PH)
- **MOTOR HOUSING**: CLASS 25 CAST IRON
- **VOLUTE**: CLASS 25 CAST IRON
- **SHAFT**: STAINLESS
- **HARDWARE**: STAINLESS
- **ORINGS**: BUNA N
- **MECHANICAL SEAL**: UNITIZED CARBON CERAMIC-SINGLE PHASE UNITIZED SILICON CARBIDE-THREE PHASE
- **MIN BEARING LIFE**: 50,000 HRS
- **WEIGHT**: 64 LBS
LE100-Series Specifications

1.01 GENERAL:
The contractor shall provide labor, material, equipment, and incidentals required to provide (QTY) centrifugal pumps as specified herein. The pump models covered in this specification are Series LE100 single phase or three phase pumps. The pump furnished for this application shall be model ____________ as manufactured by Liberty pumps.

2.01 OPERATING CONDITIONS:
Each submersible pump shall be rated at 1 hp_______volts _______ phase 60 Hz. 1725 RPM. The unit shall produce_______G.P.M. at _______ feet of total dynamic head.
The submersible pump shall be capable of handling residential sewage with 2" solid handling capability. The submersible pump shall have a shut-off head of 39 feet and a maximum flow of 160 GPM @ 12 feet of total dynamic head.
The pump shall be controlled with:

_____ A piggy back style on/off float switch.

_____ A NEMA 4X outdoor simplex control panel with three float switches and a high water alarm.
_____ A NEMA 1 indoor simplex control panel with three float switches and a high water alarm.

_____ A NEMA 4X outdoor duplex control panel with three float switches and a high water alarm.
_____ A NEMA 1 indoor duplex control panel with three float switches and a high water alarm.
_____ A NEMA 4X outdoor duplex control panel with four float switches and a high water alarm.
_____ A NEMA 1 indoor duplex control panel with four float switches and a high water alarm.

3.01 CONSTRUCTION:
Each centrifugal sewage pump shall be equal to the certified Series LE100 SERIES pumps as manufactured by Liberty Pumps, Bergen NY. The castings shall be constructed of class 25 cast iron. The motor housing shall be oil filled to dissipate heat. Air filled motors shall not be considered equal since they do not properly dissipate heat from the motor. All mating parts shall be machined and sealed with a Buna-N o-ring. All fasteners exposed to the liquid shall be stainless steel. The motor shall be protected on the top side with sealed cord entry plate with molded pins to conduct electricity eliminating the ability of water to enter internally through the cord. The motor shall be protected on the lower side with a unitized ceramic/carbon seal with stainless steel housings and spring. The upper and lower bearing shall be capable of handling all radial and thrust loads. The pump shall be furnished with stainless steel handle.

4.01 ELECTRICAL POWER CORD
The submersible pump shall be supplied with 10,25 or 35 feet of multiconductor power cord. It shall be cord type SJTW (1-PH) or SEOW (3-PH), capable of continued exposure to the pumped liquid. The power cord shall be sized for the rated full load amps of the pump in accordance with the National Electric Code. The power cable shall not enter the motor housing directly but will conduct electricity to the motor by means of a water tight compression fitting cord plate assembly, with molded pins to conduct electricity. This will eliminate the ability of water to enter internally through the cord, by means of a damaged or wicking cord.
5.01 MOTORS
Single phase motors shall be oil filled, permanent split capacitor, class B insulated NEMA B design, rated for continuous duty. Three phase motors shall be oil filled, class B insulated NEMA B design, rated for continuous duty. At maximum load the winding temperature shall not exceed 130 degrees C unsubmerged. Since air filled motors are not capable of dissipating heat they shall not be considered equal. Single phase pump motors shall have an integral thermal overload switch in the windings for protecting the motor. Three phase motors shall be used with an appropriate controller with integral overload protection. The capacitor circuit shall be mounted internally in the pump on single phase units.

6.01 BEARINGS AND SHAFT
Upper and lower ball bearings shall be required. The bearings shall be a single ball / race type bearing. Both bearings shall be permanently lubricated by the oil, which fills the motor housing. The motor shaft shall be made of 300 or 400 series stainless steel and have a minimum diameter of .625”.

7.01 SEALS
The single phase pumps shall have a unitized carbon / ceramic seal with stainless steel housings and spring equal to Crane Type 6A. Three phase pumps shall have silicon carbide seals. The motor plate / housing interface shall be sealed with a Buna-N o-ring.

8.01 IMPELLER
The impeller shall be a class 25 iron, with pump out vanes on the back shroud to keep debris away from the seal area. It shall be threaded to the motor shaft.

9.01 CONTROLS
All single phase units can be supplied with CSA and UL approved automatic wide angle tilt float switches. The switches shall be equipped with piggy back style plug that allows the pump to be operated manually without the removal of the pump in the event that a switch becomes inoperable. Manual Pumps are operable by means of a pump control panel.

10.01 PAINT
The exterior of the casting shall be protected with Powder Coat paint.

11.01 SUPPORT
The pump shall have cast iron support legs, enabling it to be a free standing unit. The legs will be high enough to allow 2” solids to enter the volute.

12.01 SERVICEABILITY
Components required for the repair of the pump shall be shipped within a period of 24 hours.
13.01 FACTORY ASSEMBLED TANK SYSTEMS WITH GUIDE RAIL AND QUICK DISCONNECT DISCHARGE

Guide factory mounted rail system with pump suspended by means of bolt on quick disconnect which is sealed by means of nitrile grommets or o-rings. The Discharge piping shall be schedule 80 PVC and furnished with check valve and a PVC shut-off ball valve. The Tank shall be wound fiberglass or roto-molded plastic. An inlet hub shall be provided with the fiberglass systems.

Stainless steel Guide Rail
Zinc plated steel Guide Rail
*diameter of basin size
*height of basin size
distance from top of tank to discharge pipe outlet
Fiberglass cover
Structural foam polymer cover
Steel cover
Simplex System with Outdoor panel and alarm
Duplex System with Outdoor panel and alarm
Simplex System with Indoor panel and alarm
Duplex System with Indoor panel and alarm
Separate Outdoor Alarm
Remote Outdoor Alarm
Separate Indoor Alarm
Remote Indoor Alarm

14.01 TESTING
The pump shall have a ground continuity check and the motor chamber shall be Hi-potted to test for electrical integrity, moisture content and insulation defects. The motor and volute housing shall be pressurized, and an air leak decay test is performed to ensure integrity of the motor housing. The pump shall be run, voltage current monitored, and the tester checks for noise or other malfunction.

15.01 QUALITY CONTROL
The pump shall be manufactured in an ISO 9001 certified Facility.

16.01 WARRANTY
Standard limited warranty shall be 3 years.