Pump Specifications

FL100 Series
Submersible Effluent Pump

Flow (Liters Per Minute)

Head (Meters)

Head (Feet)

Flow (GPM)
FL100-Series Dimensional Data

1-1/2" NPT DISCHARGE
(2" NPT DISCHARGE
WITHOUT FLANGE)

14-3 230 VOLT
POWER CORD

PIGGY BACK
SWITCH

FL100 SERIES DIMENSIONAL

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>DO NOT SCALE DRAWING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALE: 1:4</td>
<td>WEIGHT: LBS</td>
</tr>
<tr>
<td>DATE: 3/9/09</td>
<td>SHEET 1 OF 1</td>
</tr>
</tbody>
</table>

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
LIBERTY PUMPS. ANY REPRODUCTION,
IN PART OR AS A WHOLE WITHOUT THE
WRITTEN PERMISSION OF LIBERTY PUMPS
IS PROHIBITED.
FL100-Series Electrical Data

<table>
<thead>
<tr>
<th>MODEL</th>
<th>HP</th>
<th>VOLTAGE</th>
<th>PHASE</th>
<th>SF</th>
<th>FULL LOAD AMPS</th>
<th>LOCKED ROTOR AMPS</th>
<th>THERMAL OVERLOAD TEMP</th>
<th>STATOR WINDING CLASS</th>
<th>CORD LENGTH FT</th>
<th>DISCHARGE</th>
<th>AUTOMATIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL102M-2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>12</td>
<td>28.5</td>
<td>120°C 248°F</td>
<td>B</td>
<td>25</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL102M-3</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>12</td>
<td>28.5</td>
<td>120°C 248°F</td>
<td>B</td>
<td>35</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL102A-2</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>12</td>
<td>28.5</td>
<td>120°C 248°F</td>
<td>B</td>
<td>25</td>
<td>1.5 OR 2"</td>
<td>YES</td>
</tr>
<tr>
<td>FL102A-3</td>
<td>1</td>
<td>208-230</td>
<td>1</td>
<td>1.00</td>
<td>12</td>
<td>28.5</td>
<td>120°C 248°F</td>
<td>B</td>
<td>35</td>
<td>1.5 OR 2"</td>
<td>YES</td>
</tr>
<tr>
<td>FL103M-2</td>
<td>1</td>
<td>208/230</td>
<td>3</td>
<td>1.00</td>
<td>9</td>
<td>32.1</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL103M-3</td>
<td>1</td>
<td>208/230</td>
<td>3</td>
<td>1.00</td>
<td>9</td>
<td>32.1</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL103M-5</td>
<td>1</td>
<td>208/230</td>
<td>3</td>
<td>1.00</td>
<td>9</td>
<td>32.1</td>
<td>N/A</td>
<td>B</td>
<td>50</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL104M-2</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>4.5</td>
<td>16</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL104M-3</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>4.5</td>
<td>16</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL104M-5</td>
<td>1</td>
<td>440-480</td>
<td>3</td>
<td>1.00</td>
<td>4.5</td>
<td>16</td>
<td>N/A</td>
<td>B</td>
<td>50</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL105M-2</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>3.3</td>
<td>13</td>
<td>N/A</td>
<td>B</td>
<td>25</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL105M-3</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>3.3</td>
<td>13</td>
<td>N/A</td>
<td>B</td>
<td>35</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
<tr>
<td>FL105M-5</td>
<td>1</td>
<td>575</td>
<td>3</td>
<td>1.00</td>
<td>3.3</td>
<td>13</td>
<td>N/A</td>
<td>B</td>
<td>50</td>
<td>1.5 OR 2"</td>
<td>NO</td>
</tr>
</tbody>
</table>

FL100-Series Technical Data

IMPELLER	3 VANE CLASS 25 CAST IRON SOLIDS HANDLING = 3/4"
PAINT	POWDERCOATING
MAX LIQUID TEMP	40°C / 104°F CONTINUOUS DUTY
MAX STATOR TEMP	130°C / 266°F
THERMAL OVERLOAD	120°C / 248°F (single phase only)
POWER CORD TYPE	SJOW (1-ph) Sowo (3-ph)
MOTOR HOUSING	CLASS 25 CAST IRON
VOLUTE	CLASS 25 CAST IRON
SHAFT	STAINLESS
HARDWARE	STAINLESS
ORINGS	BUNA n
MECHANICAL SEAL	UNITIZED CARBON CERAMIC
WEIGHT	72 LBS
FL100-Series Specifications

1.01 GENERAL:
The contractor shall provide labor, material, equipment, and incidentals required to provide (QTY) centrifugal effluent pumps as specified herein. The pump models covered in this specification are Series FL100 single phase or three phase effluent pumps. The pump furnished for this application shall be model ______________ as manufactured by Liberty pumps.

2.01 OPERATING CONDITIONS:
Each submersible pump shall be rated at 1 hp, volts, phase 60 Hz. 3450 RPM. The unit shall produce G.P.M. at feet of total dynamic head.
The submersible pump shall be capable of handling ¾” solids enabling pumping over long distances in pipelines as small as 1.5” in diameter. The submersible pump shall have a shut-off head of 90 feet and a maximum flow of 98 GPM @ 15 feet of total dynamic head.
The pump shall be controlled with:
A piggy back style on/off float switch.
A NEMA 4X simplex control panel with three float switches and a high water alarm.
A NEMA 4X duplex control panel with three float switches and a high water alarm.

3.01 CONSTRUCTION:
Each centrifugal effluent pump shall be equal to the certified Series FL100 effluent pumps as manufactured by Liberty Pumps, Bergen NY. The castings shall be constructed of class 25 cast iron. The motor housing shall be oil filled to dissipate heat. Air filled motors shall not be considered equal since they do not properly dissipate heat from the motor. All mating parts shall be machined and sealed with a Buna-N o-ring. All fasteners exposed to the liquid shall be stainless steel. The motor shall be protected on the top side with sealed cord entry plate with molded pins to conduct electricity eliminating the ability of water to enter internally through the cord. The motor shall be protected on the lower side with a dual seal arrangement. The first seal is a double lip seal molded in FKM fluoroelastomer or Buna N. The second / main seal shall be a unitized hard face ceramic seal with stainless steel housings and spring.
The upper and lower bearing shall be capable of handling all radial thrust loads. The lower bearing shall have the additional ability to handle the downward axial thrust produced by the impeller. The pump housing shall be of the concentric design thereby equalizing the pressure forces inside the housing which will extend the service life of the seals and bearings. The pump shall be furnished with stainless steel handle having a nitrile grip.

4.01 ELECTRICAL POWER CORD
The submersible pump shall be supplied with 25, 35, or 50 feet of multiconductor power cord. It shall be cord type SJOOW (1-ph) or SEOOW (3-ph), capable of continued exposure to the pumped liquid. The power cord shall be sized for the rated full load amps of the pump in accordance with the National Electric Code. The power cable shall not enter the motor housing directly but will conduct electricity to the motor by means of a water tight compression fitting cord plate assembly, with molded pins to conduct electricity. This will eliminate the ability of water to enter internally through the cord, by means of a damaged or wicking cord.
5.01 MOTORS
Single phase motors shall be oil filled, PSC, class B insulated NEMA B design, rated for continuous duty. Three phase motors shall be polyphase. At maximum load the winding temperature shall not exceed 130 degrees C unsubmerged. Since air filled motors are not capable of dissipating heat they shall not be considered equal. The single phase pump motor shall have an integral thermal overload switch in the windings for protecting the motor.

6.01 BEARINGS AND SHAFT
Upper and lower radial bearings shall be required. The bearings shall be a single ball / race type bearing designed to handle axial pump thrust loads. Both bearings shall be permanently lubricated by the oil, which fills the motor housing. The motor shaft shall be made of 17-4 PH stainless steel and have a minimum diameter of .625”.

7.01 SEALS
The pump shall have a dual seal arrangement consisting of a lower and upper seal to protect the motor from the pumping liquid. The lower seal shall be a FKM fluoroelastomer OR Buna N molded double lip seal, designed to exclude foreign material away from the main upper seal. The upper seal shall be a unitized carbon ceramic hard face seal with stainless steel housings and spring. The motor plate / housing interface shall be sealed with a Buna-N o-ring.

8.01 IMPELLER
The impeller shall be a class 25 cast iron 2 vane impeller, with pump out vanes on the back shroud to keep debris away from the seal area. It shall be screw mounted to the motor shaft with a bonding agent.

9.01 CONTROLS
All single phase units can be supplied with CSA and UL approved automatic wide angle tilt float switches. The switches shall be equipped with piggy back style plug that allows the pump to be operated manually without the removal of the pump in the event that a switch becomes inoperable. Manual Pumps are operable by means of a pump control panel.

10.01 PAINT
The exterior of the casting shall be protected with Powder Coat Epoxy or Polyester paint.

11.01 SUPPORT
The pump shall have cast iron support legs, enabling it to be a free standing unit. The legs will be high enough to allow ¾” solids handling.

12.01 SERVICEABILITY
Components required for the repair of the pump shall be shipped within a period of 24 hours.
13.01 FACTORY ASSEMBLED TANK SYSTEMS WITH GUIDE RAIL AND QUICK DISCONNECT DISCHARGE

Guide factory mounted rail system with pump suspended by means of thread on quick disconnect which is sealed by means of nitrile grommets or o-rings. The Discharge piping shall have a check valve. The Discharge piping shall be schedule 80 PVC and furnished with a PVC shut-off ball valve. The Tank shall be wound fiberglass or roto-molded plastic. An inlet hub shall be provided with the fiberglass systems.

- Stainless steel Guide Rail
- Zinc plated steel Guide Rail
- Diameter of basin size
- Height of basin size
- Distance from top of tank to discharge pipe outlet
- Fiberglass cover
- Structural foam polymer cover
- Steel cover
- Simplex System with Outdoor panel and alarm
- Duplex System with Outdoor panel and alarm
- Separate Outdoor Alarm
- Remote Outdoor Alarm

14.01 TESTING

The pump shall have a ground continuity check and the motor chamber shall be Hi-potted to test for electrical integrity, moisture content and insulation defects. The motor and volute housing shall be pressurized, and an air leak decay test is performed to ensure integrity of the motor housing. The pump shall be run, voltage current monitored, and the tester checks for noise or other malfunction.

15.01 QUALITY CONTROL

The pump shall be manufactured in an ISO 9001 certified Facility.

16.01 WARRANTY

Standard limited warranty shall be 3 years.